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ABSTRACT 

 
Most data-intensive applications are confronted with the problems of I/O bottleneck, poor query processing times and 

space requirements. Database compression alleviates this bottleneck, reduces disk space usage, improves disk access 

speed, speeds up query response time, reduces overall retrieval time and increases the effective I/O bandwidth. However, 

random access to individual tuples in a compressed database is very difficult to achieve with most of the available 

compression techniques. This paper reports a lossless compression technique called non-differential augmented vector 

quantization. The technique is applicable to a collection of tuples and especially effective for tuples with numerous low to 

medium cardinality fields. In addition, the technique supports standard database operations, permits very fast random 

access and atomic decompression of tuples in large collections. The technique maps a database relation into a static bitmap 

index cached access structure. Consequently, we were able to achieve substantial savings in space by storing each database 

tuple as a bit value in the computer memory. Important distinguishing characteristics of our technique are that tuples can be 

compressed and decompressed individually rather than a full page or entire relation at a time. Furthermore, the information 

needed for tuple compression and decompression can reside in the memory. Possible application domains of this technique 

include decision support systems, statistical and life databases with low cardinality fields and possibly no text fields. 

 
Keywords: Data Compression, High-Dimensional Data Space, Vector Quantization, Database 

 

I. INTRODUCTION  
 

Compression has traditionally not been widely 

used in commercial database systems because many 

compression methods are effective only on large chunks of 

data and are thus incompatible with random access to 

small parts of the data [1]. Many of the available schemes 

are only suitable for data compression, which differs from 

database compression because it is usually performed at 

the granularity of the entire data objects. In data 

compression, access to random portions of the compressed 

data is impossible without decompressing the entire file. 

Evidently, this is not practical for database systems whose 

essential function is query processing. Efficient query 

processing and random accessing to small parts of data 

without incurring serious overhead is only achievable by 

fine-grained units like tuple or attributes level 

decompressions. Compression methods that provide fast 

decompression and random access are therefore, more 

attractive for databases than schemes that offer better 

compression effectiveness. The drawback typically 

associated with compression is that it puts extra burden on 

the CPU. However, recent works on database compression 

[1, 2] have shown that it: 

 

o improves system performance especially in 

read-intensive environments,  

o provides significant improvement in query 

processing performance,  

o reduces disk seek times,  

o increases disk bandwidth,  

o reduces network communication costs in 

distributed applications,  

o increases buffer hit rate and  

o decreases disk I/O to log devices. 

 

The problem on which this work premises is in 

Augmented Vector Quantization (AVQ) [3], which was 

also called Attribute Enumerative Coding (AEC) [4] or 

Tuple Differential Coding (TDC) [5, 6]. The goal of the 

study is to adapt AVQ to address the problem of randomly 

accessing and individually decompressing tuples, while 

maintaining compact storage of the data [7]. The original 

AVQ like many block-oriented schemes such as Adaptive 

Text Substitution (ATS) [8] compresses and decompresses 

relation tuples that are locally confined to memory blocks. 

The problems here are:  

 

 block (or page) level compression can result in 

poor query processing times,  

 compressed block can cross disk block 

boundaries and  

 the size of a compressed block can change when 

data in a block is updated [2]. 

  

Furthermore, random access to individual tuple is 

still not possible until a block of memory is decompressed. 

In addition, tuple ordering and differencing in AVQ 

present overhead cost that are problematic for designing 

lightweight compression and decompression routines 

especially when the database is unstable. Both tuple and 

attributes level compressions were shown to be more 

attractive from the query processing view point [2]. 
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However, attributes level compression performs better, but 

has poor compression ratio. The query processing power 

of tuple level compression, which gives higher 

compression rate, can be improved upon. This is the 

motivation for the present work. The solution we propose 

for randomly accessing stored tuples in a compressed 

relation is a static bitmap index structure. 

The rest of the paper is briefly organized as 

follows. Section 2 provides the necessary background 

information on traditional AVQ. Section 3 describes the 

new scheme and an analogue of bitmap index is suggested 

for its implementation rather than using expensive B-tree 

index structure. The evaluation of the method is 

considered in Section 4 and the paper is concluded in 

Section 5 with a brief note. 

 

II. AVQ Overview 
 

The AVQ represents a series of tuple values 

in a relational database 
 nAAAR ,,, 21 

by 

the differences between them, where iA
, i=1(1)n are 

n sets of natural numbers. The method is particularly 

applicable to sets and databases and it works as 

follows. First, each tuple in R is treated as integer 

and R is then sorted by rows. Successive tuples are 

then differenced and the differences are used to 

represent R. This technique is formally defined by 

the quantizer LQ
 as follows [3]: 

 

Given a vector quantizer: 

 

RL NZRQZRQ   :,:  

is a lossless mapping that encodes a tuple Rt  by the 

pair <C(t), d(t, Q(t))>, where C is the coder that produces 

the codeword denoting Q(t) and the difference d between 

any two tuples is given by Equation (1). 
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The compression efficiency of the technique 

depends on the choice of the codebook. If the codebook is 

properly designed, the average difference between a tuple 

and its representative tuple will be small enough that it 

takes fewer bits to encode than the original tuple. The 

simplest form of AVQ algorithm is described according to 

the following steps [3]: 

 

Step 1: Attribute encoding 
 

This is the first preprocessing stage and it achieves 

compression by mapping a long string of characters 

attribute to a short number.  

Step 2: Attribute domain ranking 

 
The lexicographical order defined by function  is 

dependent on the ordering of the attribute domains. 

Different domain orderings give rise to different orders 

and different orderings of tuples also give rise to different 

amount of differences among tuples ordinals, thus 

affecting the amount of compression. 

 

Step 3: Tuple reordering 
 

Every tuple in R is totally ordered via an ordering rule. 

The rule is usually a lexicographical order with respect to 

the attribute sequence in R defined by the function 

RNR:
, where 

 1,,1,0  RNR 
 and the 

number 
|||||| 1 i

n

i AR 
 is the size of the R space. 

The function  is defined for every tuple 

Raaat n  ,...,, 21  by: 
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The inverse function 
1  defined for all RNe  and i = 

1(1) n-1 is given by: 

 te)(1                     (3) 
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The function  converts each t  R to a unique integer 

(t) that represents its ordinal position within the R space 

and a total order is based on this function. To avoid the 

use of auxiliary variables 

r

ia
 for i = 1,…, n, we replace 

Equations (4) and (5) by an alternative model (Equation 6) 

that randomly computes a given ia
 from e and previously 

computed jia  , j = 1(1)i-1 for all i = 1(1)n. The symbols 

 x
 and  x

 denote the usual floor and ceiling functions 

respectively. 
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Step 4: Block partitioning 

 
The ordered relation is partitioned into disjoint blocks of 

tuples and the size of a memory page is chosen as the 

partition size. When a tuple is required, the block it resides 

in is transferred from the disk to the main memory. 

Coding and decoding of tuples are localized to block level 

granularity. 

 

Step 5: Block encoding 

 
A particular block consists of a set of ordered tuples and a 

representative tuple kt  is chosen from the block so as to 

minimize total distortion. Each tuple is therefore, replaced 

by its difference from kt  to obtain numerically smaller 

tuples with fewer bytes of storage. The leading zero 

components in each difference are encoded using run-

length coding. 

 

III. NON-DIFFERENTIAL AVQ 
 

The compression algorithm called Non-

differential AVQ (NAVQ) is directly based on AVQ and it 

compresses a given relation at tuple level granularity. 

Compression is done while tuples are being stored, thus it 

supports randomize decompression of individual tuples. 

The method uses modular arithmetic [9] to associate a 

tuple t with a pair of integers (q, r), where 0  q < m and 0 

 r < n. The modular arithmetic partitions the set  of 

natural numbers into n equivalent classes (or strata), where 

n  2  . Each stratum has m  1   tuples with 

common features and the entire relation is mapped into a 

static bitmap index structure nmB , . The pair (q, r) serves 

as the position marker in nmB ,  for t. We use the term 

static to discriminate the array from the conventional 

bitmap index [10], here called dynamic bitmap. The 

difference between the two bitmap types is that static 

bitmap is statically created from predefined statistics of 

the relation and dynamic bitmap is dynamically created 

from the elements of the relation. 

NAVQ is formally defined by a database quantizer NQ
 as 

follows: 

Given a vector quantizer  

 

 :,: NQRQ
 

is a lossless contraction mapping that encodes each t  R 

by the pair  

 

 )(),( 21 tCtC
<C1(t), 

 

where 1C
 and 2C

 are coders that produce pair 

of codeword denoting the position of Q(t) in a bitmap. 

Apparently, 
  tQQN is a mapping composition 

and the most important distinguishing aspects of the 

technique are (a) each compressed tuple can randomly be 

decompressed at a time complexity independent on tuples 

size, (b) compression and decompression can be carried 

out without referencing the entire page, let alone the entire 

relation.  

NAVQ is a lossless vector quantization that maps 

tuple values to bit values. It is different from AVQ since it 

does not represent a series of tuple values by their 

differences and does not perform tuple sorting, which can 

lead to a performance overhead for unstable database. 

Both methods are similar because they are applied by first 

treating each tuple in a database table as an integer. Both 

algorithms use the same mapping  to convert a tuple to a 

unique codeword. The compression algorithm is clearly 

described as follows. 

The decompression technique is based on the 

inversion function given by Equation (3) and it works 

directly in opposite mode to the compression routine. The 

detail description of the algorithm is given below: 

 

 

Algorithm 1: DB_Compressor 

Input: 

The relation R to compress 

Output: 

A static bitmap structure Bm,n of compressed 

tuples, where  nRm /||||  and n(1,  

||R||) are fixed constants. 

Method: 

This algorithm is basically in phases of preprocessing 

as follows: 

If R is compressible Then 

. Create Bm,n and initialize its entries to 0 

. If attribute encoding is required Then perform 

attribute encoding on tuples in R 

. Map every t  R to a codeword e = (t) using 

Equation 2 

. Map e to Bm,n using 1, rqB , where 

 neq /  and )/( neMODr   

 

End_Algorithm DB_Compressor 



                         Volume 1 No. 8, December 2011                                                                                                                                      ISSN-2223-4985 

International Journal of Information and Communication Technology Research 

                                                                                                                                                                                                                                                                                                                                                                     
©2010-11 IJICT Journal. All rights reserved            

 
http://www.esjournals.org 

 

 332 

 

A. Application of NAVQ Algorithm 
 

The algorithm was applied to compress the 

relation R given in [5]. The elements of RN  and the 

corresponding entries of the bitmap are displayed in Table 

I. ||R|| = 262144, n = 5 and the efficiency of the technique 

is 94.44%. Any value of n can be chosen, but for the 

bitmap to attain high degree of storage utilization, small 

values are appropriate. We recommend the cardinality of 

the relation as an appropriate value of n. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE I: A RELATION R 
 

 

 

 

 

 

 

 

 

 

 

 

B. Data Structure and Operations 
 

We now consider how access mechanisms are 

constructed on coded tuples and how the tuples can be 

retrieved and modified. The focus is to give an idea of 

how the method can be integrated with standard access 

and retrieval mechanisms. We restrict attention to basic 

operations rather than to general queries because all 

queries, simple or complex, reduce to a set of basic tuple 

operations [5]. 

We propose a static bitmap index as a suitable 

data structure for efficient implementation of the 

algorithms. Dynamic bitmap index is a special kind of 

index structure consisting in arrays of bits. Each bitmap 

represents one of the values in the indexed column and the 

bit position in the array corresponds to the row position in 

the table [11]. Bitmap indexes are most desirable for low 

cardinality field relations, systems with low concurrency, 

few updates and searches. They are frequently used in data 

warehouses since all of these conditions are found there 

[11]. A bitmap structure occupies much less space than a 

correspondent B-tree index [12, 13], an alternative 

structure that can be used instead of the bitmap. The 

primary key will then be the q values, which can be made 

small by choosing n to be large. However, the overhead 

incur by the q values and pointers to the next node will 

jeopardize the essence of compression and so bitmap is the 

most suitable structure for the application since these 

overheads are avoided. 

Static bitmap supports high concurrency, many 

updates and frequent searches. The structure consisting in 

arrays of bits, but each array represents a stratum of tuples 

with common features and not values in the index column. 

A static bitmap is different from other cached (or pre-

NR (q, r) NR (q, r) NR (q, r) NR (q, r) 

14816 (2963, 1) 92696 (18539, 1) 154073 (30814, 3) 212130 (42426, 0) 

18984 (3796, 4) 100950 (20190, 0) 158233 (31646, 3) 216867 (43373, 2) 

21140 (4228, 0) 105118 (21023, 3) 162206 (32441, 1) 223316 (44663, 1) 

39331 (7866, 1) 110105 (22021, 0) 173803 (34760, 3) 227484 (45496, 4) 

43117 (8623, 2) 117795 (23559, 0) 179038 (35807, 3) 232022 (46404, 2) 

47252 (9450, 2) 125352 (25070, 2) 182804 (36560, 4) 235363 (47072, 3) 

51104 (10220, 4) 128798 (25759, 3) 186841 (37368, 1) 244658 (48931, 3) 

68702 (13740, 2) 134302 (26860, 2) 190996 (38199, 1) 248414 (49682, 4) 

80419 (16083, 4) 137827 (27565, 2) 204052 (40810, 2) 252190 (50438, 0) 

85140 (17028, 0) 149920 (29984, 0) 207828 (41565, 3) 255449 (51089, 4) 

Algorithm 2: DB_Decompressor 

Input:  

 Bm,n and n.  

Output: 

 A list of  1k  tuples t1, t2, …, tk. 
Method:  
 

This simple algorithm is the direct inverse of 

DB_Compressor 

 

If R was compressed Then 

 

1. Create the actual relation R 

2. Convert each bitmap entry (q, r) with value 1 to a 

codeword e using rnqe  *  

3. Perform codeword decoding on e using Equation 3 

to obtain t  R 

4. If attribute encoding was carried out Then perform 

attribute decoding on t 

5. Insert t into R 

 

End_Algorithm DB_Decompressor 
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computed) access structures in the sense that it does not 

hold information about relations, but a one–to–one 

correspondence exists between it and the original relation. 

The great advantage of static bitmap index is that it allows 

the database system to avoid direct reading from or 

writing to the relation. The information needed to answer 

the query is not taken from the relation and thus in this 

context, it is related to materialized views [14]. 

We illustrate the two structures by a concrete example 

using the Sell relation [15] shown in Table II. The dynamic 

bitmap indexes and static bitmap index for this relation are 

respectively given by Tables III and IV. 

 

TABLE II: Sell Relation 
 

Company Product Country 

IBM PC France 

IBM PC Italy 

IBM PC UK 

IBM Mainframe France 

IBM Mainframe Italy 

IBM Mainframe UK 

DEC PC France 

DEC PC Spain 

DEC PC Ireland 

DEC Mini France 

DEC Mini Spain 

DEC Mini Ireland 

ICL Mainframe Italy 

ICL Mainframe France 

… … … 

 

TABLE III: Dynamic Bitmap Indexes 
 

(a) Index Company (b) Index Product (c) Index Country 

 
IBM DEC ICL PC MA MI FR IT UK SP IR 

1 0 0 1 0 0 1 0 0 0 0 

1 0 0 1 0 0 0 1 0 0 0 

1 0 0 1 0 0 0 0 1 0 0 

1 0 0 0 1 0 1 0 0 0 0 

1 0 0 0 1 0 0 1 0 0 0 

1 0 0 0 1 0 0 0 1 0 0 

0 1 0 1 0 0 1 0 0 0 0 

0 1 0 1 0 0 0 0 0 1 0 

0 1 0 1 0 0 0 0 0 0 1 

0 1 0 0 0 1 1 0 0 0 0 

0 1 0 0 0 1 0 0 0 1 0 

0 1 0 0 0 1 0 0 0 0 1 

0 0 1 0 1 0 0 1 0 0 0 

0 0 1 0 1 0 1 0 0 0 0 

 

TABLE IV: Static Bitmap Index 
 

 
 r0  r1  r2  

q0  1 1 1 

q1  0 0 1 

q2  1 1 0 

q3  0 0 0 

q4  0 0 0 

q5  1 0 0 

q6  1 1 0 
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q7  0 0 0 

q8  0 1 0 

q9  0 1 1 

q10  0 0 0 

q11  0 0 1 

q12  1 0 0 

q13  0 0 0 

q14  0 0 0 

 

 

 

 

 

 

C. Access method 

 
A static bitmap index structure is constructed 

using the data in Table (I). Suppose a query wishes to 

locate the tuple <2, 1, 3, 38, 30>, the query only needs to 

check if the location given by (32441, 1) for this tuple in 

the bitmap has a bit value one. The value of one is an 

indication that the tuple is present in the relation while 

zero means it does not exist. 

 

 

D. Tuple insertion, deletion and 

modification 
 

Tuple insertions and deletions are supported in 

the compressed database as follows. Suppose we wish to 

insert the tuple <2, 3, 1, 39, 24>. The codeword for the 

tuple is 186840 and the tuple is stored as 1 in location 

(37386, 0) in the bitmap structure. For tuple deletion we 

simply assign bit value 0 to this location. Tuple 

modification is simply a combination of tuple insertion 

and deletion. Conclusively, standard database operations 

remain the same even when the database is NAVQ coded.  

 

E. Evaluation of the Techniques 
 

The performance of a compression technique can 

be measured in terms of (a) compression ratio, (b) 

compression and decompression time overhead and (c) 

query response time. We concentrate on the first factor in 

this paper since our access structure provides efficient 

access mechanism. 

The efficiency  of a compression technique operating on 

a relation R with k tuples is usually defined in terms of 

two parameters D and C respectively denoting the sizes of 

the relation before and after compression. The ratio  is 

defined by [5]: 

 

D

C
 1

                  (7) 

Equation (7) suggests that positive efficiency is 

not always guaranteed as  may take on negative values 

depending on whether the relation is compressible or not. 

If C > D, negative efficiency occurs and the database is 

said to be incompressible. A positive efficiency implies 

the technique compresses well according to the largeness 

of . Small positive value of  signifies poor compression 

and zero value shows that compression is not achieved by 

the technique. 

The efficiencies of two compression techniques 

can also be compared using Equation (7). In this case C 

and D are respectively the sizes of the compressed relation 

when techniques 1 and 2 are applied. The value of  being 

zero implies that both techniques have the same 

efficiencies, small value of  is an indication that the 

second technique performs better than the first and large 

value of  means the first technique compresses better 

than the second. We further discriminate between two 

techniques with nearly the same compression efficiency 

using other characteristics such as compression 

throughput, simplicity and efficiency of the algorithms. In 

most cases, a lightweight scheme is preferable to a 

heavyweight scheme. 

 

A. Compression efficiency of AVQ 

 
The efficiency of AVQ is affected by two factors 

compression overhead per tuple and tuple spacing [5]. The 

compression overhead per tuple is the size of the count 

field used to indicate the number of leading zero 

components of a tuple. Usually, a fixed-size field of size  

bits is used to encode this count in order to avoid making 

the scheme overly complex. For n attribute domains, the 

number of leading zero components in any difference 

tuple is larger than zero, but less than n. Thus, the number 

of bits required for the field is 
 n2lo g

. If relation 

R has k tuples, the total compression overhead is given by 

(k-1), since k tuples yield k-1 differences. 

The spacing between two tuples 
ji tt   with 

respect to  is measured by a function 

)1,0[: RR  defined as: 

 

 ))()((log),( 2 ijji tttt  
 (8) 

 

The quantity 
),( ji tt

measures the number of 

bits required to represent the numerical difference between 
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tuples it  and jt
. The further apart the tuples are, the larger 

is the difference. The total space requirement in bits for 

the k-1 tuple differences and fixed compression overhead 

per tuple is: 
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The size of the relation before compression is: 

 

 )(log2 tkD 
 

 

The compression efficiency ratio of AVQ is given by: 
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B. Compression Efficiency of NAVQ 
 

The efficiency of NAVQ can be determined 

ahead of compression and it is affected by two factors 

namely the norm of R space and the overhead of storing 

the parameter n, which corresponds to column size of the 

bitmap. Since every tuple is mapped to a bit value, tuple 

size is just one bit. This follows that ||R|| bits are required 

for storing a database relation with a maximum of ||R|| 

tuples. If n is chosen to correspond to the cardinality of R, 

then the efficiency * of the method assuming a low size 

dictionary was used for attribute encoding, is given by:  

 

 )(log

||||
1

2 tk

R









    
  (10) 

 

It can easily be shown that NAVQ gives higher 

compression ratio than AVQ whenever the load factor of 

the relation (i.e. the ratio of number of records to the size 

of the relation) is high. The question of which of the two 

schemes gives a higher compression rate can be solved as 

follows. If for a given k, the load factor  satisfies 

condition (11) then NAVQ gives a higher compression 

rate than AVQ, otherwise the reverse is the truth. Even if 

the compression rate of AVQ is higher (for low tuples in 

relation), NAVQ has the advantage of providing random 

access to individual tuples in the relation. 
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IV. CONCLUSION 
 

This paper presented a new compression 

algorithm that is based on AVQ and demonstrates its 

effectiveness on relational database, which exhibits low to 

medium cardinality fields and numeric fields. The 

algorithm supports standard database operations, permits 

very fast random access and atomic decompression of 

tuples in large collection of data with low decompression 

cost. 

In comparison to a novel AVQ, our technique 

hopefully yields a higher compression ratio for large 

tuples. However, in general, the technique has the 

disadvantage that it compresses only low cardinality field 

database relations. We hope to develop a hybrid version of 

this algorithm to compress databases containing generic-

purpose data, such as images, sound and text. We also 

intend to extend the technique for mining association rules 

in compressed databases.  
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