
 Volume 1 No. 8, December 2011 ISSN-2223-4985

International Journal of Information and Communication Technology Research

©2010-11 IJICT Journal. All rights reserved

http://www.esjournals.org

 329

Compression of High-dimensional Data Spaces Using Non-differential

Augmented Vector Quantization

1
Aderemi A. Atayero,

2
Adeyemi A. Alatishe,

3
Oludayo O. Olugbara

1,2
Department of Electrical and Info. Engineering, Covenant University, Nigeria

3
Department of Computer Science, University of Zululand,South Africa

ABSTRACT

Most data-intensive applications are confronted with the problems of I/O bottleneck, poor query processing times and

space requirements. Database compression alleviates this bottleneck, reduces disk space usage, improves disk access

speed, speeds up query response time, reduces overall retrieval time and increases the effective I/O bandwidth. However,

random access to individual tuples in a compressed database is very difficult to achieve with most of the available

compression techniques. This paper reports a lossless compression technique called non-differential augmented vector

quantization. The technique is applicable to a collection of tuples and especially effective for tuples with numerous low to

medium cardinality fields. In addition, the technique supports standard database operations, permits very fast random

access and atomic decompression of tuples in large collections. The technique maps a database relation into a static bitmap

index cached access structure. Consequently, we were able to achieve substantial savings in space by storing each database

tuple as a bit value in the computer memory. Important distinguishing characteristics of our technique are that tuples can be

compressed and decompressed individually rather than a full page or entire relation at a time. Furthermore, the information

needed for tuple compression and decompression can reside in the memory. Possible application domains of this technique

include decision support systems, statistical and life databases with low cardinality fields and possibly no text fields.

Keywords: Data Compression, High-Dimensional Data Space, Vector Quantization, Database

I. INTRODUCTION

Compression has traditionally not been widely

used in commercial database systems because many

compression methods are effective only on large chunks of

data and are thus incompatible with random access to

small parts of the data [1]. Many of the available schemes

are only suitable for data compression, which differs from

database compression because it is usually performed at

the granularity of the entire data objects. In data

compression, access to random portions of the compressed

data is impossible without decompressing the entire file.

Evidently, this is not practical for database systems whose

essential function is query processing. Efficient query

processing and random accessing to small parts of data

without incurring serious overhead is only achievable by

fine-grained units like tuple or attributes level

decompressions. Compression methods that provide fast

decompression and random access are therefore, more

attractive for databases than schemes that offer better

compression effectiveness. The drawback typically

associated with compression is that it puts extra burden on

the CPU. However, recent works on database compression

[1, 2] have shown that it:

o improves system performance especially in

read-intensive environments,

o provides significant improvement in query

processing performance,

o reduces disk seek times,

o increases disk bandwidth,

o reduces network communication costs in

distributed applications,

o increases buffer hit rate and

o decreases disk I/O to log devices.

The problem on which this work premises is in

Augmented Vector Quantization (AVQ) [3], which was

also called Attribute Enumerative Coding (AEC) [4] or

Tuple Differential Coding (TDC) [5, 6]. The goal of the

study is to adapt AVQ to address the problem of randomly

accessing and individually decompressing tuples, while

maintaining compact storage of the data [7]. The original

AVQ like many block-oriented schemes such as Adaptive

Text Substitution (ATS) [8] compresses and decompresses

relation tuples that are locally confined to memory blocks.

The problems here are:

 block (or page) level compression can result in

poor query processing times,

 compressed block can cross disk block

boundaries and

 the size of a compressed block can change when

data in a block is updated [2].

Furthermore, random access to individual tuple is

still not possible until a block of memory is decompressed.

In addition, tuple ordering and differencing in AVQ

present overhead cost that are problematic for designing

lightweight compression and decompression routines

especially when the database is unstable. Both tuple and

attributes level compressions were shown to be more

attractive from the query processing view point [2].

 Volume 1 No. 8, December 2011 ISSN-2223-4985

International Journal of Information and Communication Technology Research

©2010-11 IJICT Journal. All rights reserved

http://www.esjournals.org

 330

However, attributes level compression performs better, but

has poor compression ratio. The query processing power

of tuple level compression, which gives higher

compression rate, can be improved upon. This is the

motivation for the present work. The solution we propose

for randomly accessing stored tuples in a compressed

relation is a static bitmap index structure.

The rest of the paper is briefly organized as

follows. Section 2 provides the necessary background

information on traditional AVQ. Section 3 describes the

new scheme and an analogue of bitmap index is suggested

for its implementation rather than using expensive B-tree

index structure. The evaluation of the method is

considered in Section 4 and the paper is concluded in

Section 5 with a brief note.

II. AVQ Overview

The AVQ represents a series of tuple values

in a relational database
 nAAAR ,,, 21 

by

the differences between them, where iA
, i=1(1)n are

n sets of natural numbers. The method is particularly

applicable to sets and databases and it works as

follows. First, each tuple in R is treated as integer

and R is then sorted by rows. Successive tuples are

then differenced and the differences are used to

represent R. This technique is formally defined by

the quantizer LQ
 as follows [3]:

Given a vector quantizer:

RL NZRQZRQ   :,:

is a lossless mapping that encodes a tuple Rt by the

pair <C(t), d(t, Q(t))>, where C is the coder that produces

the codeword denoting Q(t) and the difference d between

any two tuples is given by Equation (1).












o th erwisett

ttiftt
ttd

ji

jiij

ji
,)()(

,)()(
),(




 (1)

The compression efficiency of the technique

depends on the choice of the codebook. If the codebook is

properly designed, the average difference between a tuple

and its representative tuple will be small enough that it

takes fewer bits to encode than the original tuple. The

simplest form of AVQ algorithm is described according to

the following steps [3]:

Step 1: Attribute encoding

This is the first preprocessing stage and it achieves

compression by mapping a long string of characters

attribute to a short number.

Step 2: Attribute domain ranking

The lexicographical order defined by function  is

dependent on the ordering of the attribute domains.

Different domain orderings give rise to different orders

and different orderings of tuples also give rise to different

amount of differences among tuples ordinals, thus

affecting the amount of compression.

Step 3: Tuple reordering

Every tuple in R is totally ordered via an ordering rule.

The rule is usually a lexicographical order with respect to

the attribute sequence in R defined by the function

RNR:
, where

 1,,1,0  RNR 
 and the

number
|||||| 1 i

n

i AR 
 is the size of the R space.

The function  is defined for every tuple

Raaat n  ,...,, 21 by:

 
 
















n

i

j

n

ij

i Aat
1 1

||)( (2)

The inverse function
1 defined for all RNe and i =

1(1) n-1 is given by:

 te)(1 (3)

Where ear 0 ,
r

nn aa 1 ,




















||1

1

j

n

ij

r

i
i

A

a
a (4)

||
1

1 j

n

ij

i

r

i

r

i Aaaa 


 

 (5)

The function  converts each t  R to a unique integer

(t) that represents its ordinal position within the R space

and a total order is based on this function. To avoid the

use of auxiliary variables

r

ia
 for i = 1,…, n, we replace

Equations (4) and (5) by an alternative model (Equation 6)

that randomly computes a given ia
 from e and previously

computed jia  , j = 1(1)i-1 for all i = 1(1)n. The symbols

 x
 and  x

 denote the usual floor and ceiling functions

respectively.




























 

 

||

)||(

1

1

1 1

k

n

ik

i

j

n

jk

kj

i
A

Aae

a

 (6)

 Volume 1 No. 8, December 2011 ISSN-2223-4985

International Journal of Information and Communication Technology Research

©2010-11 IJICT Journal. All rights reserved

http://www.esjournals.org

 331

Step 4: Block partitioning

The ordered relation is partitioned into disjoint blocks of

tuples and the size of a memory page is chosen as the

partition size. When a tuple is required, the block it resides

in is transferred from the disk to the main memory.

Coding and decoding of tuples are localized to block level

granularity.

Step 5: Block encoding

A particular block consists of a set of ordered tuples and a

representative tuple kt is chosen from the block so as to

minimize total distortion. Each tuple is therefore, replaced

by its difference from kt to obtain numerically smaller

tuples with fewer bytes of storage. The leading zero

components in each difference are encoded using run-

length coding.

III. NON-DIFFERENTIAL AVQ

The compression algorithm called Non-

differential AVQ (NAVQ) is directly based on AVQ and it

compresses a given relation at tuple level granularity.

Compression is done while tuples are being stored, thus it

supports randomize decompression of individual tuples.

The method uses modular arithmetic [9] to associate a

tuple t with a pair of integers (q, r), where 0  q < m and 0

 r < n. The modular arithmetic partitions the set  of

natural numbers into n equivalent classes (or strata), where

n  2  . Each stratum has m  1   tuples with

common features and the entire relation is mapped into a

static bitmap index structure nmB , . The pair (q, r) serves

as the position marker in nmB , for t. We use the term

static to discriminate the array from the conventional

bitmap index [10], here called dynamic bitmap. The

difference between the two bitmap types is that static

bitmap is statically created from predefined statistics of

the relation and dynamic bitmap is dynamically created

from the elements of the relation.

NAVQ is formally defined by a database quantizer NQ
 as

follows:

Given a vector quantizer

 :,: NQRQ

is a lossless contraction mapping that encodes each t  R

by the pair

)(),(21 tCtC
<C1(t),

where 1C
 and 2C

 are coders that produce pair

of codeword denoting the position of Q(t) in a bitmap.

Apparently,
  tQQN is a mapping composition

and the most important distinguishing aspects of the

technique are (a) each compressed tuple can randomly be

decompressed at a time complexity independent on tuples

size, (b) compression and decompression can be carried

out without referencing the entire page, let alone the entire

relation.

NAVQ is a lossless vector quantization that maps

tuple values to bit values. It is different from AVQ since it

does not represent a series of tuple values by their

differences and does not perform tuple sorting, which can

lead to a performance overhead for unstable database.

Both methods are similar because they are applied by first

treating each tuple in a database table as an integer. Both

algorithms use the same mapping  to convert a tuple to a

unique codeword. The compression algorithm is clearly

described as follows.

The decompression technique is based on the

inversion function given by Equation (3) and it works

directly in opposite mode to the compression routine. The

detail description of the algorithm is given below:

Algorithm 1: DB_Compressor

Input:

The relation R to compress

Output:

A static bitmap structure Bm,n of compressed

tuples, where  nRm /|||| and n(1,

||R||) are fixed constants.

Method:

This algorithm is basically in phases of preprocessing

as follows:

If R is compressible Then

. Create Bm,n and initialize its entries to 0

. If attribute encoding is required Then perform

attribute encoding on tuples in R

. Map every t  R to a codeword e = (t) using

Equation 2

. Map e to Bm,n using 1, rqB , where

 neq / and)/(neMODr 

End_Algorithm DB_Compressor

 Volume 1 No. 8, December 2011 ISSN-2223-4985

International Journal of Information and Communication Technology Research

©2010-11 IJICT Journal. All rights reserved

http://www.esjournals.org

 332

A. Application of NAVQ Algorithm

The algorithm was applied to compress the

relation R given in [5]. The elements of RN and the

corresponding entries of the bitmap are displayed in Table

I. ||R|| = 262144, n = 5 and the efficiency of the technique

is 94.44%. Any value of n can be chosen, but for the

bitmap to attain high degree of storage utilization, small

values are appropriate. We recommend the cardinality of

the relation as an appropriate value of n.

TABLE I: A RELATION R

B. Data Structure and Operations

We now consider how access mechanisms are

constructed on coded tuples and how the tuples can be

retrieved and modified. The focus is to give an idea of

how the method can be integrated with standard access

and retrieval mechanisms. We restrict attention to basic

operations rather than to general queries because all

queries, simple or complex, reduce to a set of basic tuple

operations [5].

We propose a static bitmap index as a suitable

data structure for efficient implementation of the

algorithms. Dynamic bitmap index is a special kind of

index structure consisting in arrays of bits. Each bitmap

represents one of the values in the indexed column and the

bit position in the array corresponds to the row position in

the table [11]. Bitmap indexes are most desirable for low

cardinality field relations, systems with low concurrency,

few updates and searches. They are frequently used in data

warehouses since all of these conditions are found there

[11]. A bitmap structure occupies much less space than a

correspondent B-tree index [12, 13], an alternative

structure that can be used instead of the bitmap. The

primary key will then be the q values, which can be made

small by choosing n to be large. However, the overhead

incur by the q values and pointers to the next node will

jeopardize the essence of compression and so bitmap is the

most suitable structure for the application since these

overheads are avoided.

Static bitmap supports high concurrency, many

updates and frequent searches. The structure consisting in

arrays of bits, but each array represents a stratum of tuples

with common features and not values in the index column.

A static bitmap is different from other cached (or pre-

NR (q, r) NR (q, r) NR (q, r) NR (q, r)

14816 (2963, 1) 92696 (18539, 1) 154073 (30814, 3) 212130 (42426, 0)

18984 (3796, 4) 100950 (20190, 0) 158233 (31646, 3) 216867 (43373, 2)

21140 (4228, 0) 105118 (21023, 3) 162206 (32441, 1) 223316 (44663, 1)

39331 (7866, 1) 110105 (22021, 0) 173803 (34760, 3) 227484 (45496, 4)

43117 (8623, 2) 117795 (23559, 0) 179038 (35807, 3) 232022 (46404, 2)

47252 (9450, 2) 125352 (25070, 2) 182804 (36560, 4) 235363 (47072, 3)

51104 (10220, 4) 128798 (25759, 3) 186841 (37368, 1) 244658 (48931, 3)

68702 (13740, 2) 134302 (26860, 2) 190996 (38199, 1) 248414 (49682, 4)

80419 (16083, 4) 137827 (27565, 2) 204052 (40810, 2) 252190 (50438, 0)

85140 (17028, 0) 149920 (29984, 0) 207828 (41565, 3) 255449 (51089, 4)

Algorithm 2: DB_Decompressor

Input:

 Bm,n and n.

Output:

 A list of 1k tuples t1, t2, …, tk.
Method:

This simple algorithm is the direct inverse of

DB_Compressor

If R was compressed Then

1. Create the actual relation R

2. Convert each bitmap entry (q, r) with value 1 to a

codeword e using rnqe  *

3. Perform codeword decoding on e using Equation 3

to obtain t  R

4. If attribute encoding was carried out Then perform

attribute decoding on t

5. Insert t into R

End_Algorithm DB_Decompressor

 Volume 1 No. 8, December 2011 ISSN-2223-4985

International Journal of Information and Communication Technology Research

©2010-11 IJICT Journal. All rights reserved

http://www.esjournals.org

 333

computed) access structures in the sense that it does not

hold information about relations, but a one–to–one

correspondence exists between it and the original relation.

The great advantage of static bitmap index is that it allows

the database system to avoid direct reading from or

writing to the relation. The information needed to answer

the query is not taken from the relation and thus in this

context, it is related to materialized views [14].

We illustrate the two structures by a concrete example

using the Sell relation [15] shown in Table II. The dynamic

bitmap indexes and static bitmap index for this relation are

respectively given by Tables III and IV.

TABLE II: Sell Relation

Company Product Country

IBM PC France

IBM PC Italy

IBM PC UK

IBM Mainframe France

IBM Mainframe Italy

IBM Mainframe UK

DEC PC France

DEC PC Spain

DEC PC Ireland

DEC Mini France

DEC Mini Spain

DEC Mini Ireland

ICL Mainframe Italy

ICL Mainframe France

… … …

TABLE III: Dynamic Bitmap Indexes

(a) Index Company (b) Index Product (c) Index Country

IBM DEC ICL PC MA MI FR IT UK SP IR

1 0 0 1 0 0 1 0 0 0 0

1 0 0 1 0 0 0 1 0 0 0

1 0 0 1 0 0 0 0 1 0 0

1 0 0 0 1 0 1 0 0 0 0

1 0 0 0 1 0 0 1 0 0 0

1 0 0 0 1 0 0 0 1 0 0

0 1 0 1 0 0 1 0 0 0 0

0 1 0 1 0 0 0 0 0 1 0

0 1 0 1 0 0 0 0 0 0 1

0 1 0 0 0 1 1 0 0 0 0

0 1 0 0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 0 0 0

0 0 1 0 1 0 1 0 0 0 0

TABLE IV: Static Bitmap Index

 r0 r1 r2

q0 1 1 1

q1 0 0 1

q2 1 1 0

q3 0 0 0

q4 0 0 0

q5 1 0 0

q6 1 1 0

 Volume 1 No. 8, December 2011 ISSN-2223-4985

International Journal of Information and Communication Technology Research

©2010-11 IJICT Journal. All rights reserved

http://www.esjournals.org

 334

q7 0 0 0

q8 0 1 0

q9 0 1 1

q10 0 0 0

q11 0 0 1

q12 1 0 0

q13 0 0 0

q14 0 0 0

C. Access method

A static bitmap index structure is constructed

using the data in Table (I). Suppose a query wishes to

locate the tuple <2, 1, 3, 38, 30>, the query only needs to

check if the location given by (32441, 1) for this tuple in

the bitmap has a bit value one. The value of one is an

indication that the tuple is present in the relation while

zero means it does not exist.

D. Tuple insertion, deletion and

modification

Tuple insertions and deletions are supported in

the compressed database as follows. Suppose we wish to

insert the tuple <2, 3, 1, 39, 24>. The codeword for the

tuple is 186840 and the tuple is stored as 1 in location

(37386, 0) in the bitmap structure. For tuple deletion we

simply assign bit value 0 to this location. Tuple

modification is simply a combination of tuple insertion

and deletion. Conclusively, standard database operations

remain the same even when the database is NAVQ coded.

E. Evaluation of the Techniques

The performance of a compression technique can

be measured in terms of (a) compression ratio, (b)

compression and decompression time overhead and (c)

query response time. We concentrate on the first factor in

this paper since our access structure provides efficient

access mechanism.

The efficiency  of a compression technique operating on

a relation R with k tuples is usually defined in terms of

two parameters D and C respectively denoting the sizes of

the relation before and after compression. The ratio  is

defined by [5]:

D

C
 1

 (7)

Equation (7) suggests that positive efficiency is

not always guaranteed as  may take on negative values

depending on whether the relation is compressible or not.

If C > D, negative efficiency occurs and the database is

said to be incompressible. A positive efficiency implies

the technique compresses well according to the largeness

of . Small positive value of  signifies poor compression

and zero value shows that compression is not achieved by

the technique.

The efficiencies of two compression techniques

can also be compared using Equation (7). In this case C

and D are respectively the sizes of the compressed relation

when techniques 1 and 2 are applied. The value of  being

zero implies that both techniques have the same

efficiencies, small value of  is an indication that the

second technique performs better than the first and large

value of  means the first technique compresses better

than the second. We further discriminate between two

techniques with nearly the same compression efficiency

using other characteristics such as compression

throughput, simplicity and efficiency of the algorithms. In

most cases, a lightweight scheme is preferable to a

heavyweight scheme.

A. Compression efficiency of AVQ

The efficiency of AVQ is affected by two factors

compression overhead per tuple and tuple spacing [5]. The

compression overhead per tuple is the size of the count

field used to indicate the number of leading zero

components of a tuple. Usually, a fixed-size field of size 

bits is used to encode this count in order to avoid making

the scheme overly complex. For n attribute domains, the

number of leading zero components in any difference

tuple is larger than zero, but less than n. Thus, the number

of bits required for the field is
 n2lo g

. If relation

R has k tuples, the total compression overhead is given by

(k-1), since k tuples yield k-1 differences.

The spacing between two tuples
ji tt  with

respect to  is measured by a function

)1,0[: RR defined as:

 ))()((log),(2 ijji tttt  
 (8)

The quantity
),(ji tt

measures the number of

bits required to represent the numerical difference between

 Volume 1 No. 8, December 2011 ISSN-2223-4985

International Journal of Information and Communication Technology Research

©2010-11 IJICT Journal. All rights reserved

http://www.esjournals.org

 335

tuples it and jt
. The further apart the tuples are, the larger

is the difference. The total space requirement in bits for

the k-1 tuple differences and fixed compression overhead

per tuple is:






 
1

1

1)),((
k

i

ii ttC 

The size of the relation before compression is:

 )(log2 tkD 

The compression efficiency ratio of AVQ is given by:

 )(log

),()1(

1
2

1

1

1

tk

ttk
k

i

ii















 (9)

B. Compression Efficiency of NAVQ

The efficiency of NAVQ can be determined

ahead of compression and it is affected by two factors

namely the norm of R space and the overhead of storing

the parameter n, which corresponds to column size of the

bitmap. Since every tuple is mapped to a bit value, tuple

size is just one bit. This follows that ||R|| bits are required

for storing a database relation with a maximum of ||R||

tuples. If n is chosen to correspond to the cardinality of R,

then the efficiency * of the method assuming a low size

dictionary was used for attribute encoding, is given by:

 )(log

||||
1

2 tk

R









 (10)

It can easily be shown that NAVQ gives higher

compression ratio than AVQ whenever the load factor of

the relation (i.e. the ratio of number of records to the size

of the relation) is high. The question of which of the two

schemes gives a higher compression rate can be solved as

follows. If for a given k, the load factor  satisfies

condition (11) then NAVQ gives a higher compression

rate than AVQ, otherwise the reverse is the truth. Even if

the compression rate of AVQ is higher (for low tuples in

relation), NAVQ has the advantage of providing random

access to individual tuples in the relation.









1

1

1),()2(
k

i

ii ttk

k





 (11)

IV. CONCLUSION

This paper presented a new compression

algorithm that is based on AVQ and demonstrates its

effectiveness on relational database, which exhibits low to

medium cardinality fields and numeric fields. The

algorithm supports standard database operations, permits

very fast random access and atomic decompression of

tuples in large collection of data with low decompression

cost.

In comparison to a novel AVQ, our technique

hopefully yields a higher compression ratio for large

tuples. However, in general, the technique has the

disadvantage that it compresses only low cardinality field

database relations. We hope to develop a hybrid version of

this algorithm to compress databases containing generic-

purpose data, such as images, sound and text. We also

intend to extend the technique for mining association rules

in compressed databases.

REFERENCES

[1] Z. Chen, J. Gehrke and F. Korn, “Query

Optimization in Compressed Database Systems”,

ACM SIGMOD, USA, pp. 271-282, 2001.

[2] G. Ray, J.R. Haritsa and S. Seshadri, “Database

Compression: A Performance Enhancement

Tool”, COMAD, 1995.

[3] W.K. Ng and C.V. Ravishankar, “Relational

Database Compression Using Augmented Vector

Quantization”, Proceedings of the 11th IEEE

International Conference on Data Engineering,

pp. 540-549, 1995.

[4] W.K. Ng and C.V. Ravishankar, “Attribute

Enumerative Coding: A Compression Technique

for Tuple Data Structures”, Proceedings of the

4th Data Compression Conference, pp. 461,

1994.

[5] W.K. Ng and C.V. Ravishankar, “Block-oriented

Compression Techniques for Large Statistical

Databases”, IEEE Trans. Knowledge and Data

Eng, pp. 9, 314-328, 1997.

[6] W.B. Wu and C.V. Ravishankar, “The

Performance of Difference Coding for Sets and

Relational Tables”, Journal of the ACM, Vol. 50,

pp. 665-693, 2003.

[7] A. Cannane and H.E. Williams, “A Compression

Scheme for Large Databases”, ACSC. vol. 10,

pp. 241-248, 2000.

[8] T.A. Welch, “A Technique for High Performance

Data Compression”, Computer, vol. 7, No. 6, pp.

8-19, 1984.

 Volume 1 No. 8, December 2011 ISSN-2223-4985

International Journal of Information and Communication Technology Research

©2010-11 IJICT Journal. All rights reserved

http://www.esjournals.org

 336

[9] R.P. Grimaldi, Discrete and Combinatorial

Mathematics, An Applied Introduction 2nd ed.,

Addisson-Wesley, USA, 1989.

[10] C.Y. Chan and Y.E. Ioannidis, “Bitmap Index

Design and Evaluation”, Proc. SIGMOD

Conference, pp.355-366, 1998.

[11] P. Bizarro and H. Madeira, “The Dimension-Join:

A New Index for Data Warehouses”, SBBD, pp.

259-273, 2001.

[12] R. Bayer and E. McCreight, “Organization and

Maintenance of Large Ordered Indexes”, Acta

Informatica1(3), pp. 173-189, 1979.

[13] D. Comer, “The Ubiquitous B-tree”, Computing

Surveys 2(2), 1979, pp. 122.

[14] N. Roussopoulos, “Materialized Views and Data

Warehouses”, ACM SIGMOD Record 27(1), pp.

21-26, 1998.

[15] J.G. Hughes, Database Technology, A Software

Engineering Approach. Prentice-Hall, 1988.

