
Volume 3 No. 3, March 2013 ISSN 2223-4985

International Journal of Information and Communication Technology Research

 ©2013 ICT Journal. All rights reserved

http://www.esjournals.org

 102

Online Map Application Development Using Google Maps API,

SQL Database, and ASP.NET

1 Shunfu Hu, 2 Ting Dai
1 Department of Geography, Southern Illinois University Edwardsville, Edwardsville, IL 62026, USA

2 Farm Service Agency, Unites States Department of Agriculture, Washington, DC 20250, USA

ABSTRACT

Recently, there has seen increasing interest in developing online map services using Google Maps Application Programming

Interface (API), Yahoo! Maps API, Microsoft Bing Maps API, Nokia Ovi Maps API, and ESRI ArcGIS API. Application developers

utilize Maps API as a platform and combine spatial data from multiple sources to create new customized services ï a buzzword

commonly called map ñmashupsò. The use of Maps API has revolutionized online mapping applications on the Internet. However,

there are two major drawbacks in the map ñmashupsò. First, the application developer utilizes open source methods such as XML,

Fusion Tables, CSV, or KML for the preparation of limited amount of usually non-secured spatial data, which are not suitable for

data sources in the format of a commercial database stored on a secure data server. Second, map ñmashupsò is focused on the use of

the Maps API platform for the fast delivery of the customized services or data, so they usually lack of sophisticated functionalities

and intuitive user interfaces that can offer the user the capability to manipulate the data. The objective of this paper is to demonstrate

an online mapping application that requires the access to data sources in the format of a commercial database stored on a secure data

server and that offers sophisticated functionalities for the user to manipulate the data. A case study of developing an online map

service to display tens of thousands gardens on the Internet for the United States Department of Agriculture (USDA) People's

Garden Initiative is presented. Google Maps API, Google Geocoderer, Microsoft SQL database, Microsoft aspx.NET, and Spry

Framework for Ajax are employed to develop this online map application. It is also anticipated that the online map application can

be used in major web browsers such as Microsoft Internet Explorer (IE) 7.0+, Google Chrome, Mozilla Firefox, and Apple Safari.

Keywords: Online Mapping, Google Maps API, SQL Database, ASP.NET, USDA

1. INTRODUCTION

The Google Maps launched in 2005 has revolutionized online

mapping service applications on the World Wide Web. Based

on Asynchronous JavaScript and XML (AJAX), a new type of

client/server interaction was introduced in Google Maps to

maintain a continuous connection between the client and the

server for immediate downloading of additional map

information [1]. In addition, Google also provides programmers

its extensive sources of code called the Application

Programming Interface (API). The API consists of a set of data

structures, object classes or functions that can be used by a

programmer using JavaScript, PHP or other scripting language

[2]. With the current version 3, it is not required to register the

API key to use the Google Maps. The new version supports

both traditional web browsers such as Internet Explorer 7.0+,

Firefox 3.0+, Safari 4+, Chrome, Android, BlackBerry, and

Dolfin as well as web browsers such as the Apple iPad and

iPhone on mobile devices. all of which having a full JavaScript

implementation. These features make Google Maps JavaScript

API the most commonly used Maps API for online mapping

[3]. Other Maps APIs are also available for online mapping,

including Yahoo! Maps API, Microsoft Bing Maps API, Nokia

Ovi Maps API, and ESRI ArcGIS API.

Recently there has seen increasing interest in utilizing Google

Maps API to implement web-based mapping services, ranging

from simple applications to display just a few points of interest

with information window to sophisticated map mashups [4] [5]

[6] [7] [8]. Scholefield [9] developed a web-based map service

for tourism of eighteenth and nineteenth century Edinburgh

using Google Map API, Oracle RDMS (Relational Database

Management System), Microsoft SQL (Structured Query

Language), Perl, eXtensible Markup Language (XML),

JavaScript, Hypertext Markup Language (HTML), eXtensible

HTML (XHML), and Cascade Style Sheet (CSS). Similarly,

Pejic et al. [10] developed an eTourism application using

Google Map API to present prominent points of tourist

destinations. Bildirici and Ulugtekin [11] demonstrates a web

mapping service with Google Maps (API V2) mashups in

which points, polylines and polygons from the data stored in

Keyhole Markup Language (KML), XML and Geodatabase

format are overlaid with Google Maps through JavaScript code.

Liu and Palen [12] examine the use of Google Maps mashups

in the crisis management for nine natural disasters such as

earthquakes, fires, sea level rise, and so on using near real-time

and publicly available data feeds. Hu [13] discusses a new

approach of mashups in multimedia mapping that utilizes

Google Maps API, Yahoo! Flickr API, and YouTube API to

combine spatial data, multimedia information and functionality

from multiple sources to create the online visitor guide for the

Southern Illinois University Edwardsville campus. Hu [14] also

uses Google Maps JavaScript API, and other JavaScript

libraries such as jQuery, XML, and MarkerClusterer to develop

an online map service to display and search over 600 locations

of the gardens from the United States Department of

Agriculture (USDA) Peopleôs Garden Initiative. However,

there are two major drawbacks in the map ñmashupsò. First, the

application developer utilizes open source methods in the

preparation of spatial data, including XML files, Google Fusion

Tables, comma-separated values (CSV) files, or Keyhole

Markup Language (KML) files. The drawback of such

http://www.esjournals.org/

Volume 3 No. 3, March 2013 ISSN 2223-4985

International Journal of Information and Communication Technology Research

 ©2013 ICT Journal. All rights reserved

http://www.esjournals.org

 103

methods is that it took efforts to reformat the original data and

the data is not in its original database that can be updated in

real time. Second, map ñmashupsò is focused on the use of the

Maps API platform for the fast delivery of the customized

services or data, so they usually lack of sophisticated

functionalities and intuitive user interfaces that can offer the

user the capability to manipulate the data. The objective of this

paper is to demonstrate an online mapping application that

requires the access to live data sources in the format of a

commercial database stored on a secure data server and that

offers sophisticated functionalities that allow the user to

manipulate the data. A case study of developing an online map

service to display tens of thousands gardens on the Internet for

the United States Department of Agriculture (USDA) People's

Garden Initiative is presented. Google Maps API, Google

Geocoderer, Microsoft SQL database, Microsoft aspx.NET, and

Spry Framework for Ajax are employed to develop this online

map application. It is also anticipated that the online map

application can be used in major brands of web browsers such

as Microsoft Internet Explorer (IE) 7.0+, Google Chrome,

Mozilla Firefox, and Apple Safari.

2. METHODOLOGY

2.1. Data Set

The USDA People's Garden Initiative is an effort to challenge

its employees to establish People's Gardens at USDA facilities

worldwide or help communities create gardens [15]. The

garden information is collected initially through the USDA

Peopleôs Garden online registration process and is in a

Microsoft SQL Server 2005 database stored on a USDAôs

secure server. The data set for this project contains thousands

of gardens, including the name of each garden, the street

address, city, state, and zip code of the garden, the type of the

garden (1 - At USDA Facilities; 2 - At Schools; 3 - At Other

Places Within the Community; 4 - At Faith-based Centers; and

5 - At Other Federal Agencies), the geographic location (i.e.,

latitude and longitude in decimal degrees) of each garden, and

more importantly what are planted in each garden.

2.2. ñMashupò of Google Maps API and SQL

Database through JavaScript and XHTML

Since the online map application is a web application, every

Maps API implementation is based on a web page. JavaScript

is the native language of Google Maps. In addition, Google

Maps is built of XHTML (Extensible HTML), formatted with

CSS (Cascading Style Sheet) [16]. Therefore, both JavaScript

and XHTML are used for developing the USDA online garden

map application. Figure 1 illustrates a conceptual framework

for the integration of the major components. The

implementation is done using the Microsoft Visual Studio

Express, which is a light-weight version of the Microsoftôs

Visual Studio (VS) and provides a set of free software

programs in the form of Microsoftôs integrated development

environment (IDE). The VS Express includes Visual Web

Developer Express (VWDE), Visual Basic Express, Visual

C++ Express, Visual C# Express and SQL Server Express. The

VWDE allows application developers to create ASP websites

with the programming language either Visual C# or Visual

Basic. It has a very user friendly interface for web design. The

SQL Server Management Studio Express provides the

capability to edit, update, and manage SQL Server Express

database. For instance, the developer can create a new SQL

database for a web site but import the data from Oracle,

Microsoft ACCESS, Excel or ODBC sources. For this project,

Visual Web Developer 2010 Express was chosen to develop the

USDA online map application, and SQL Server Management

Studio 2008 Express was selected to import the USDA garden

database and to create a new SQL database called

PeoplesGarden for the application development environment.

In PeoplesGarden database, two views (virtual tables) were

created to dynamically summarize the total garden counts based

on the state names. Using the standard Structured Query

Language (SQL), the first view called Gardens was created to

tally the number of gardens for each US state, and the second

view called State_Centerpoints that contains the center latitude

and longitude of each state was appended to the first view so

that the summary data can be displayed in the map window.

Microsoft aspx.NET technology was employed to connect to

and retrieve data from the database. An aspx page contains

scripts written in Microsoft .NET languages such as Visual

Basic.NET and C#.NET. In this application, Visual Basic.NET

was used to perform all the database tasks.

As shown in Figure 1, when the garden.htm is accessed by a

web user, it first determines the userôs web browser type (see

section 2.4) and a browser-specific html file calls an initialize

function from the Main.js JavaScript file. When the Main.js

initializes the online map page, it sends a request to an aspx

named NewGetData.aspx (see below). The aspx script retrieves

garden data either at the national level or at the state level from

PeoplesGarden database depending on usersô requests.

function initialize()

{

 geocoder = new google.maps.Geocoder();

//For centering map on contiguous USA

 var myLatlng = new google.maps.LatLng(38, -95);

 var myOptions = {

 zoom: 4,

 center: myLatlng,

 scaleControl: true,

 mapTypeId:

 google.maps.MapTypeId.ROADMAP }

map = new google.maps.Map(document.getElementById

 ("map_canvas"), myOptions);

//Calls an aspx script to retrieve data from SQL Server database

$.get("newGetData.aspx?level=national", displaynational);

}

http://www.esjournals.org/

Volume 3 No. 3, March 2013 ISSN 2223-4985

International Journal of Information and Communication Technology Research

 ©2013 ICT Journal. All rights reserved

http://www.esjournals.org

 104

Web Server IIS

Garden.htm

Browser Type

PGMSIE.htmPGChrome.html

Yes, Internet Explorer

No, Other Type

Initialize

Main.js NewGetData.aspx

Get Type of

Data

GetNationalData GetStateData

Connection to

Database

Web.config

State Data
National Data

Garden Property

and Location Data

People’s Garden

Database

Tables and Views

Database Connection Strings

People’s Garden Web Map Application Flow Chart

Google Map

API

Web Map Application

Figure 1. A conceptual framework of developing the Peopleôs Garden online map application.

The aspx script then connects to the database using a

connection string defined in the website configuration file

web.config.

<connectionStrings>

 <add name="MyDatabaseConnectionString"

 connectionString="Data Source=SERVERNAME;

 Initial Catalog=PeoplesGarden; Integrated

 Security=True" />

</connectionStrings>

Once the database is connected, the aspx uses two

member functions to retrieve the garden data. The first function

getNationalData() retrieves summary data for each US state

including state name, total garden count by state, and state

centric latitude and longitude (Figure 2). The second function

getStateData() retrieves individual garden information in each

selected state from the PeoplesGarden database, including

Garden Name, Garden City, Garden State, Garden Zip Code,

Garden Street Address, Garden Type, Latitude, Longitude,

Photo Name, and Photo Location (Figure 3). Below is the

Visual Basic.NET code that works with the web.config to get

the individual garden information from the database.

 Imports Microsoft.VisualBasic

 Imports System.Data.SqlClient

 Imports System.Configuration

 Public Class NewDataLogic

 Dim separator As String = ";;"

 Dim ConnectionString As String =ConfigurationManager.

 ConnectionStrings("MyDatabaseConnectionString").

 ConnectionString

 Public Function getStateData(state As String) As String

 Dim myConnection As New SqlConnection

 Dim myCommand As New SqlCommand

 Dim myDataReader As SqlDataReader

 Dim result As String = ""

 If (state = "") Then state = "DC"

 Try

 myConnection = New

 SqlConnection(ConnectionString)

 myConnection.Open()

 Dim mysql As String = "select Garden_Name as name,

 Garden_city as city, Garden_State as state,

 Garden_Zip_code as zipcode, Garden_Street_Address_1

 as address, Garden_Type as gtype, Type_of_Garden as

 CIndex, Lat as y, Lon as x, Photo_Name as Photo_Name,

 Location as Location, Garden_Street_Address_2 as

 address2 from Gardens where Garden_State = '" & state

http://www.esjournals.org/

Volume 3 No. 3, March 2013 ISSN 2223-4985

International Journal of Information and Communication Technology Research

 ©2013 ICT Journal. All rights reserved

http://www.esjournals.org

 105

 & "'"

myCommand = New SqlCommand(mysql,

 myConnection)

 myDataReader = myCommand.ExecuteReader()

 Dim x As String

 Dim y As String

 Dim name As String

 Dim st As String

 Dim city As String

 Dim zip As String

 Dim addr As String

 Dim cindex As String

 Dim gtype As String

 Dim Photo_Name As String

 Dim Location As String

 Dim address2 As String

 While myDataReader.Read()

 If (IsDBNull(myDataReader("x"))) Then

 x = ""

 Else

 x = CStr(myDataReader("x"))

 End If

 If (IsDBNull(myDataReader("y"))) Then

 y = ""

 Else

 y = CStr(myDataReader("y"))

 End If

 If (IsDBNull(myDataReader("name"))) Then

 name = ""

 Else

 name = CStr(myDataReader("name"))

 End If

 If (IsDBNull(myDataReader("State"))) Then

 st = ""

 Else

 st = CStr(myDataReader("State"))

 End If

 If (IsDBNull(myDataReader("city"))) Then

 city = ""

 Else

 city = CStr(myDataReader("city"))

 End If

 If (IsDBNull(myDataReader("zipcode"))) Then

 zip = ""

 Else

 zip = CStr(myDataReader("zipcode"))

 End If

 If (IsDBNull(myDataReader("address"))) Then

 addr = ""

 Else

 addr = CStr(myDataReader("address"))

 End If

 If (IsDBNull(myDataReader("CIndex"))) Then

 cindex = ""

 Else

 cindex = CStr(myDataReader("CIndex"))

 End If

 If (IsDBNull(myDataReader("gtype"))) Then

 gtype = ""

 Else

 gtype = CStr(myDataReader("gtype"))

 End If

 If (IsDBNull(myDataReader("Photo_Name")))

 Then

 Photo_Name = ""

 Else

 Photo_Name =

 CStr(myDataReader("Photo_Name"))

 End If

 If (IsDBNull(myDataReader("Location"))) Then

 Location = ""

 Else

 Location = CStr(myDataReader("Location"))

 End If

 If (IsDBNull(myDataReader("address2"))) Then

 address2 = ""

 Else

 address2 = CStr(myDataReader("address2"))

 End If

 If (x <> "") And (y <> "") Then

 result = result + y + separator + x

 result = result + separator + name + separator + st

 result = result + separator + city + separator + zip

 result = result + separator + addr + separator +

 cindex

 result = result + separator + gtype + separator +

 Photo_Name

 result = result + separator + Location + separator +

 address2

 result = result + "|"

 End If

 End While

 myDataReader.Close()

 myDataReader = Nothing

 Catch ex As Exception

 Finally

 myConnection.Close()

 myConnection = Nothing

 End Try

 Return result

 End Function

The result string generated from the above code that

contains individual garden information is passed back to

Main.js and then processed to a point on the online map.

2.3. Development of Searching and Filtering

Functions

http://www.esjournals.org/

Volume 3 No. 3, March 2013 ISSN 2223-4985

International Journal of Information and Communication Technology Research

 ©2013 ICT Journal. All rights reserved

http://www.esjournals.org

 106

It is required for this project to provide the user with a web

interface for search functions such as Find Gardens by Location

(e.g., address or zip code) and Find Gardens by State (Figure 2)

so the user can have the option to see only selected gardens

around that address or zipcode, or within that state.

Furthermore, search functions need to be accompanied by

another function called Filter by Type. The first two functions,

Find Gardens by Location and Find Gardens by State, were

accomplished by using Google Maps APIôs Geocoding process,

which converts addresses (e.g., "8008 Davis Dr., St. Louis,

MO") into geographic coordinates (e.g., latitude 38.64005705

and longitude -90.3373296). With this pair of latitude and

longitude, the programmer can place a marker onto the map.

This can be done using the geocoder function (i.e., class) from

the Google Maps API. However, the programmer has to create

a new geocoder object within the Main.js function initialize() as

follows:

 var geocoder = new google.maps.Geocoder();

and then create a new codeaddress () function (refer to

https://developers.google.com/maps/documentation/javascript/g

eocoding).

2.4. Web Browsers Compatibility

It is anticipated that the USDA online map service needs to be

used in most of the web browsers such as Microsoft Internet

Explorer (IE) 7.0+, Google Chrome, Mozilla Firefox, and

Apple Safari. The initial testing of the USDA online map

application indicated that there were compatibility issues. For

instance, Microsoft IE (7, 8 and 9) and Mozilla Firefox did not

support rounded corners for tabbed panels. Apple Safari for

iPad and iPhone did not support flash movies. Only Google

Chrome did not have any problem. Those issues were resolved

by offering a main page Garden.htm to detect whether the

browser is IE or Google Chrome, Mozilla Firefox, and Apple

Safari. If it is IE, the web page is automatically redirected to

PGMSIE.htm; otherwise, it is redirected to PGchrome.html.

Below is the code for Garden.htm.

<html>

<head>

 <meta name="viewport" content="initial-scale=1.0, user-

scalable=no" />

 <meta http-equiv="content-type" content="text/html;

charset=UTF-8" />

 <title>USDA People's Garden Initiative</title>

 <script type="text/javascript" language="JavaScript">

 function detectbrowser() {

 var browserName = navigator.appName;

 switch (browserName) {

 case ("Microsoft Internet Explorer"):

 document.write('<META HTTP-EQUIV="REFRESH"

CONTENT="1;URL=PGMSIE.htm">'); break;

 case ("Chrome"):

 case ("Firefox"):

 case ("Safari"):

 case ("Mozilla"):

 case ("Netscape"):

 document.write('<META HTTP-EQUIV="REFRESH"

CONTENT="1;URL=PGchrome.html">');

 break;

 default: alert("You browser might not be supported");

 }

 }

 </script>

</head>

<body>

 <p> People's Garden</p>

 <script type="text/javascript" language="JavaScript">

 detectbrowser();

 </script>

</body>

</html>

2.5. Use of JavaScript and CSS to Design the Layout

of the Online Map Application

In the design of the online map application, a HTML table with

three-row layout design was adopted, including first row for a

tabbed interface, second row for the map container, and third

row for the garden type legend. In the tabbed interface, two

tabs are provided, including one for Find Gardens by Location,

and the other for Find Gardens by State (Figure 2). The tabbed

interface was developed using the Adobeôs Spry 1.6 framework

for Ajax, which is a JavaScript library for the development of

interactive web pages ([17]. To do so, the programmer has to

download SpryTabbedPanels.css and SpryTabbedPanels.js (all

open sources) from the Adobe Labs. The former links the CSS

for the tabbed panel; the latter links the Spry TabbedPanels

JavaScript library with the search functions. Both of them need

to be placed in the head section of the web page (i.e.,

PGMSIE.htm or PGChrome.html) as follows:

<link href="SpryTabbedPanels.css" rel="stylesheet"

type="text/css" />

<script src="SpryTabbedPanels.js" type="text/javascript">

</script>

Working in conjunction with the tab Find Gardens by Location

is the HTML <input> tag and input field that allow the user to

type in address or zip code from the keyboard. The HTML code

looks as below:

<input id="address" size="40" type="textbox"

value="Please type your address or zipcode here">

Then, the <select> tag is used to create a drop-down list for the

user to select an item from a list and the <option> tags inside

the select element specify the available items (i.e., options) in

the list. For instance, Filter by Type allows the user to choose

one of the five garden types with 0 as a default value for no

filtering. It was implemented with the following HTML code:

<select id = "select_type" name="Garden_Type">

<option value="0" selected>Filter by Type</option>

<option value="1">At USDA Facilities</option>

http://www.esjournals.org/

Volume 3 No. 3, March 2013 ISSN 2223-4985

International Journal of Information and Communication Technology Research

 ©2013 ICT Journal. All rights reserved

http://www.esjournals.org

 107

<option value="2">At Schools</option>

<option value="3">At Other Places within the Community

</option>

<option value="4">At Faith-based Centers</option>

<option value="5">At Other Federal Agencies</option>

</select>

Similarly, the tab Find Gardens by State allows the user to

choose one state from the list with ñAll Statesò as the default

value to show all the gardens in the entire United States and its

territories. It is worthy of note that each tab is linked to the

search function and filter function described in the Section 2.3.

In the map container, the Google map or satellite imagery is

displayed, and points of interest (e.g., gardens) are marked with

the customized marker icons ï the green shovel for gardens at

USDA facilities, the yellow shovel for gardens at schools, and

so on. The garden type legend is placed at the bottom of the

map contains that match the marker icons displayed in the map

container.

In order to provide the user with interaction with the map, a

few standard Google Maps controls are added, such as Pan and

Zoom controls; Map Scale control; and Map Type controlï

Roadmap and Satellite. In addition, tooltips (e.g., garden name)

to the markers are provided, along with clickable marker icons

with Google Maps APIôs standard Infowindow, which displays

the information about each garden (i.e., garden name, address,

city, state, zip code, a link to garden pictures, etc.).

3. RESULTS

The use of Google Maps API V3 provides a very efficient

mechanism to deliver digital cartographic information to the

Internet users with fast response time and user friendly

interaction. Using Google Maps standard Map Type control,

the user is able to choose one of the two map types: roadmap or

satellite imagery. Figure 2 shows the startup view of the

Peopleôs Garden online mapping application in Google Chrome.

At the initial launch of the web page is the display of Google

Maps with the number of gardens in each state. This gives the

user a clear idea where most of the gardens are concentrated.

Notice that in Figure 2 there are two tabs, Find Gardens by

Location and Find Gardens by State. The user can click one of

them to perform the search functions.

Figure 3 shows the result of a search function, Find Gardens by

State. In this case, the user selects the state of Illinois. All of the

individual gardens in the state are displayed on the map with

the customized marker icons. The map legend at the bottom of

the screen provides the five types of gardens shown on the map.

This feature provides the user with a clear understanding about

the gardens he/she is looking at.

Figure 4 shows the result a Filter by Type function. In this case,

the user first select all the gardens in the state of Illinois and

then filer the gardens by a type (e.g., At USDA Faculties).

Figure 5 shows the result of another search function, Find

Gardens by Location, using addresses or zip codes. The user

can first type in the street

address, city, and state, or a zip code, and the map window will

zoom into that address or zip code and display all the gardens

around it. The user can then filer the gardens by a type (e.g., At

USDA Facilities). The user can click on an icon at any time to

get specific information about that garden in the standard

Google Infowindow.

4. CONCLUSION AND DISCUSSION

This paper has demonstrated an online mapping application that

was successfully developed using Google Maps API v3,

Google Geocoding, Microsoft SQL Server Express database,

and Spry Framework for Ajax. The case study presented in this

article provides the advanced functionality to display the

locations and state-based summary counts of USDAôs

thousands of peoplesô gardens on the Internet with customized

icons and map legend. It also provides the sophisticated

functionalities for searching, filtering, and tabbed interface that

offer the user the capability to manipulate the data.

Online mapping from a database being updated in real time can

be very useful for many purposes. First, the database can be

collected from an online registration process that, along with

other information contains locational information such as

latitude and longitude or street addresses. This is the way how

the USDA peopleôs garden information has been gathered.

Such database can be stored on a secure server inside a firewall.

Second, once the data has been collected and stored, it can be

easily and directly retrieved in full or partially for online

mapping application without going through a data format

transformation as it has been done in the past (e.g., XML).

Third, the backend database can be updated through the

database interface and the resulting data changes will be

reflected immediately on the web interface. Fourth, complex

data manipulation can be carried out using the powerful SQL

scripts in the backend databases.

Publishing and sharing geo-spatial data are becoming important

and popular tasks in various applications. One particular sector

is in the public health. Doctors at different offices across a

region or a country can report certain type of disease (e.g.,

West Nile Virus, SARS) in real time to a centralize database,

and such information can be delivered to an online map

immediately so the health officials and the general public can

quickly take preventive actions. The project described in this

paper can be easily modified to meet the requirements of such

important tasks.

ACKNOWLEDGEMENTS

We thank USDA Peopleôs Garden Initiative director Livia

Marques for her leadership in this project, USDA Annie

Ceccarini for her initial web interface design, USDA NRCS

Tianpu Liang for his ASP.NET coding and database connection

support, USDA OCIO John Roccaforte for providing database

access, and Acacia Dai of the Thomas Jefferson High School

for Science and Technology for graphics design for the web

page.

http://www.esjournals.org/

Volume 3 No. 3, March 2013 ISSN 2223-4985

International Journal of Information and Communication Technology Research

 ©2013 ICT Journal. All rights reserved

http://www.esjournals.org

 108

 Figure 2. The initial view of the USDA Peopleôs Garden online map application

 with the number of gardens for each state.

 Figure 3. Find Gardens by State displays only the gardens in a selected state.

 The map legend at the bottom indicates the type of the gardens.

http://www.esjournals.org/

Volume 3 No. 3, March 2013 ISSN 2223-4985

International Journal of Information and Communication Technology Research

 ©2013 ICT Journal. All rights reserved

http://www.esjournals.org

 109

 Figure 4. Filter by Type (in this case, At USDA Facilities) displays only the gardens in that category.

 Figure 5. Find Gardens by Location (address or zipcode) will zoom to that location. If the user

 clicks a garden icon on the map, the information about that garden is displayed in the Infowindow.

http://www.esjournals.org/

Volume 3 No. 3, March 2013 ISSN 2223-4985

International Journal of Information and Communication Technology Research

 ©2013 ICT Journal. All rights reserved

http://www.esjournals.org

 110

REFERENCES

[1]. Peterson, M. P. (2008). International Perspectives on

Maps and the Internet: An Introduction, In M. P.

Peterson (Ed.), International Perspectives on Maps and

the Internet (pp. 3-10), Springer.

[2]. Udell, S. (2009). Beginning Google Maps Mashups with

Mapplets, KML, and GeoRSS. New York, NY: Apress.

[3]. Peterson, M. P. (2012). Online Mapping with APIs,

Online Maps with APIs and Mapservices (M. P. Peterson,

ed.), Springer, pp. 3-12.

[4]. Johnston, L. R. and K. L. Jensen. (2009). MapHappy: A

user-centered interface to library map collections via

a Google maps "Mashup". Journal of Map and

Geography Libraries, 5(2): 114-130.

[5]. Peng, X. and X. Wu. (2010). Digital

campus map publishing based on Google Map API

 Journal of Geomatics, 35(1), pp. 25-27,

[6]. Roth, R. E. and K. S. Ross. (2009). Extending the Google

maps API for event animation mashups. Cartographic

Perspectives, 64, pp. 21-31.

[7]. Chow, T. E. (2008). The potential of Maps APIs for

Internet GIS Applications, Transactions in GIS, 12(2), pp.

179-191.

[8]. Pan, B., J. C. Crottsa, and B. Mullerb. (2010).

Developing Web-Based Tourist Information Tools Using

Google Map.

http://www.ota.cofc.edu/pan/PanCrottsMullerDeveloping

GoogleMap.pdf. Last accessed on May 7, 2011.

[9]. Scholefield, K. (2008). Web based map services for

scientific tourism: a case study of eighteenth and

nineteenth century Edinburgh. Master of Science Thesis,

http://hdl.handle.net/1842/2475.

[10]. Pejic, A., S. Pletl, and B. Pejic. (2009). An Expert

System for Tourists Using Google Maps API, 7th

International Symposium on Intelligent Systems and

Informatics, SISY '09.

[11]. Bildirici, I. O. and N. N. Ulugtekin. (2010). Web

Mapping with Google Maps Mashups: Overlaying

Geodata. A Special Joint Symposium of ISPRS

Technical Commission IV & AutoCarto in Conjunction

With ASPRS/CaGIS 2010 Fall Specialty Conference,

November 15-19, Orlando, Florida.

[12]. Liu, S. B., and L. Palen. (2010). The New cartographers:

Crisis Map Mashups and the Emergence of

Neogeographic Practice, Cartography and geographic

Information System, Vol. 37, No. 1, pp. 69-90.

[13]. Hu, S. (2012). Multimedia Mapping on the Internet

Using Commercial APIs, Online Maps with APIs and

Mapservices (M. P. Peterson, ed.), Springer, pp. 61-71.

[14]. Hu, S. (2012). Online Map Service Using Google Maps

API and Other JavaScript Libraries: An Open Source

Method, Online Maps with APIs and Mapservices (M. P.

Peterson, ed.), Springer, pp. 265-278.

[15]. United States Department of Agriculture (USDA).

(2011). Peopleôs Garden Initiative.

http://www.usda.gov/wps/portal/usda/usdahome?navid=

PEOPLES_GARDEN. Last accessed on February 9,

2011.

[16]. Udell, S. (2009). Beginning Google Maps Mashups with

Mapplets, KML, and GeoRSS. New York, NY: Apress.

[17]. Adobe. (2011). Working with Spry 1.6.

http://livedocs.adobe.com/en_US/Spry/SDG/help.html.

Last accessed on May 10, 2011.

http://www.esjournals.org/
http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bPeng%2C+Xuan%7d§ion1=AU&database=8192&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bRoth%2C+Robert+E.%7d§ion1=AU&database=8192&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bRoss%2C+Kevin+S.%7d§ion1=AU&database=8192&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bChow%2C+T.+Edwin%7d§ion1=AU&database=8192&yearselect=yearrange&sort=yr

